Gaya Pemulih(FISIKA XII)
Gaya pemulih dimiliki oleh setiap benda elastis yang terkena gaya sehingga benda elastis tersebut berubah bentuk[4]. Gaya yang timbul pada benda elastis untuk menarik kembali benda yang melekat padanya di sebut gaya pemulih[4].Gaya Pemulih pada Pegas
Pegas adalah salah satu contoh benda elastis[4]. Oleh sifat elastisnya ini, suatu pegas yang diberi gaya tekan atau gaya regang akan kembali pada keadaan setimbangnya mula- mula apabila gaya yang bekerja padanya dihilangkan[4]. Gaya pemulih pada pegas banyak dimanfaatkan dalam bidang teknik dan kehidupan sehari- hari[4]. Misalnya di dalam shockbreaker dan springbed[4]. Sebuah pegas berfungsi meredam getaran saat roda kendaraan melewati jalan yang tidak rata[4]. Pegas - pegas yang tersusun di dalam springbed akan memberikan kenyamanan saat orang tidur[4].Hukum Hooke
Jika gaya yang bekerja pada sebuah pegas dihilangkan, pegas tersebut akan kembali pada keadaan semula[5]. Robert Hooke, ilmuwan berkebangsaan Inggris menyimpulkan bahwa sifat elastis pegas tersebut ada batasnya dan besar gaya pegas sebanding dengan pertambahan panjang pegas[5]. Dari penelitian yang dilakukan, didapatkan bahwa besar gaya pegas pemulih sebanding dengan pertambahan panjang pegas. Secara matematis, dapat dituliskan sebagai[5] :
Tanda (-) diberikan karena arah gaya pemulih pada pegas berlawanan dengan arah gerak pegas tersebut.
[sunting] Susunan Pegas
Konstanta pegas dapat berubah nilainya, apabila pegas - pegas tersebut disusun menjadi rangkaian[5]. Besar konstanta total rangkaian pegas bergantung pada jenis rangkaian pegas, yaitu rangkaian pegas seri atau paralel[5].- Seri / Deret



- Paralel




ktotal = k1 + k2 + k3 +....+ kn, dengan kn = konstanta pegas ke - n.
Gaya Pemulih pada Ayunan Bandul Matematis
Ayunan matematis merupakan suatu partikel massa yang tergantung pada suatu titik tetap pada seutas tali, di mana massa tali dapat diabaikan dan tali tidak dapat bertambah panjang[6]. Dari gambar tersebut, terdapat sebuah beban bermassa




Oleh karena


Persamaan, Kecepatan, dan Percepatan Gerak Harmonik Sederhana
Persamaan Gerak Harmonik Sederhana
Persamaan Gerak Harmonik Sederhana adalah[6] :
Keterangan :
Y = simpangan
A = simpangan maksimum (amplitudo)
F = frekuensi
t = waktu
Jika posisi sudut awal adalah


Kecepatan Gerak Harmonik Sederhana
Dari persamaan gerak harmonik sederhana
Kecepatan gerak harmonik sederhana[6] :



Kecepatan maksimum diperoleh jika nilai



Kecepatan untuk Berbagai Simpangan

Persamaan tersebut dikuadratkan



Dari persamaan :


Persamaan (1) dan (2) dikalikan, sehingga didapatkan :

Keterangan :
v =kecepatan benda pada simpangan tertentu

A = amplitudo
Y = simpangan
Percepatan Gerak Harmonik Sederhana
Dari persamaan kecepatan :


Percepatan maksimum jika





Keterangan :
a maks = percepatan maksimum
A = amplitudo

Hubungan Gerak Harmonik Sederhana (GHS) dan Gerak Melingkar Beraturan (GMB)
Gerak Melingkar Beraturan dapat dipandang sebagai gabungan dua gerak harmonik sederhana yang saling tegak lurus, memiliki Amplitudo (A) dan frekuensi yang sama namun memiliki beda fase relatif
Misalnya sebuah benda bergerak dengan laju tetap (v) pada sebuah lingkaran yang memiliki jari-jari A sebagaimana tampak pada gambar di samping[7]. Benda melakukan Gerak Melingkar Beraturan, sehingga kecepatan sudutnya bernilai konstan[7]. Hubungan antara kecepatan linear dengan kecepatan sudut dalam Gerak Melingkar Beraturan dinyatakan dengan persamaan[7] :

Karena jari-jari (r) pada Gerak Melingkar Beraturan di atas adalah A, maka persamaan ini diubah menjadi :


Simpangan sudut (teta) adalah perbandingan antara jarak linear x dengan jari-jari lingkaran (r), dan dinyatakan dengan persamaan :



Dengan demikian, simpangan sudut benda relatif terhadap sumbu x dinyatakan dengan persamaan :


Pada gambar di atas, posisi benda pada sumbu x dinyatakan dengan persamaan :


Persamaan posisi benda pada sumbu y :

Keterangan :
A = amplitudo


Aplikasi Gerak Harmonik Sederhana
Shockabsorber pada Mobil
Peredam kejut (shockabsorber) pada mobil memiliki komponen pada bagian atasnya terhubung dengan piston dan dipasangkan dengan rangka kendaraan[8]. Bagian bawahnya, terpasang dengan silinder bagian bawah yang dipasangkan dengan as roda[8]. Fluida kental menyebabkan gaya redaman yang bergantung pada kecepatan relatif dari kedua ujung unit tersebut[8]. Hal ini membantu untuk mengendalikan guncangan pada roda[8].Jam Mekanik
Roda keseimbangan dari suatu jam mekanik memiliki komponen pegas[8]. Pegas akan memberikan suatu torsi pemulih yang sebanding dengan perpindahan sudut dan posisi kesetimbangan[8]. Gerak ini dinamakan Gerak Harmonik Sederhana sudut (angular)[8].Garpu Tala
Garpu tala dengan ukuran yang berbeda menghasilkan bunyi dengan pola titinada yang berbeda[8]. Makin kecil massa m pada gigi garpu tala, makin tinggi frekuensi osilasi dan makin tinggi pola titinada dari bunyi yang dihasilkan garpu tala[8].
0 komentar:
Posting Komentar